Intel” Firmware Support Package for the
Intel” Atom™ Processor C2000 Product
Family for Communications
Infrastructure

Integration Guide

September 2015

Introduction

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting: http://www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Learn more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will

affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2015, Intel Corporation.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
2

http://www.intel.com/design/literature.htm
http://www.intel.com/
http://www.intel.com/performance

Introduction

Contents

September 2015

[N go o U Tt 4 T o J0E TP 6
1.1 PUI D OIS eree e es e s e s e se s s e EeRER e 6
1.2 Intelligent Systems and Embedded Ecosystem OVervieWw........eneenessesseeens 6
1.3 TaN T gTe [T I 2YU T 1= o ol 6
1.4 Related Documents.... 6
1.5 (@00 1Y 7=T o 4 o o 1= 7
1.6 Acronyms and TErMINOLOGYcuueereereemersseesseesserssesssessessessse s sssesssssesssssssssssesssssans 7
FSP OVEIVIEW ..ouineeeeeeeeaseesetsessesseesesses s ssse s st s s bR A e b bbb n bt 8
2.1 DESIN PRIlOSOPNY ...ttt 8
2.2 TECNNICAL OVEIVIEW ettt sss et ss s sss st s s s ss st s s sassanses 8
FSP INEEBIATION ..ottt sttt s s bbb bbb bbbttt 9
3.1 Assumptions Used in this DOCUMENtcoeneneeeneerneeeneeeneenseennens 9
BOOt FIOW ..,
FSP BiNAry FOIMAt.. ettt ssess st st
5.1 FSP Header
5.1.1 Finding the FSP Header ... nssssssssssssssssssssssssssssssssssaens 12
5.1.2 FSP HEAAEI Off ST iiiiirireireeeireiseeseissessessecssessessessssse st sssssssssssssssssssssssssanees 13
FSP INtEITACE (FSP API) et tsessessessessessesssssssssesssssssssesssssssssssssssssssssssssssssasessssssanesssessanessesnsas 14
6.1 Entry-Point Calling ASSUMPTIONScueeeeeeeeeeseeeseesseesseessessseessesssesssesssesssesssesssesssssssssssssseses 14
6.2 Data Structure CONVENTION ...ttt sssssssssssnes 14
6.3 Entry-Point Calling CONVENTIONceceeeeeereerreerseerseeseesessesssesssesseessesssesssessesssessssssessessees 14
6.4 EXIT CONVENTION ettt seescsse e s bbbt 15
6.5 TeMPRAMINITENTIY .o nes 15
6.5.1 0 (o) 4/ o= TP 16
6.5.2 ParameEters . ————————— 16
6.5.3 Related DefiNitiONS ...ttt ss st st sseassassanes 16
6.5.3.1 RETUIN VALUES ...ttt snseases 16
6.5.3.2 SAMPLE COAO . rsesse s sssasens 18
6.5.4 D=1l] o) 0] o IFPU TP 20
6.6 (=] o] [VL =1 011 PPV 20
6.6.1 PrototYPe .o ———— 20
6.6.2 ParameEters s s 20
6.6.3 Related DEfiNtIONS ...ttt sessessesse s sses s sess s sssssssses 21
6.6.4 RETUIN VALUES ...t ssnaees 22
6.6.5 SAMPLE COUE ettt et sr st s s es s s ss bbb st st b b s 23
6.6.6 D T=E T of o) 4] o PP PP 24

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
3

i n te | ® > Introduction

10

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

6.7 NOtifyPhaseENTry ...

6.7.1 Prototype.....cncrnnenenn.

6.7.2 Parameters. ...

6.7.2.1 Related Definitions

6.7.3 Return Values ... eneeneeeneerneerneeeseesseesseesseesens

6.7.4 SaMPLle COAE ..
o] o O 11U | PP 28
7.1 Boot Loader Temporary Memory Data HOB..........oneneneeneeseeseesseessesssesssesssesssesssees 28
7.2 FSP Reserved Memory Resource Descriptor HOB.......oeeeneeneesseesseesseesseessessensens 29
7.3 Non-Volatile StOrage HOB ... seessesssssssesssesssesssessessssssessesssssssssssssesss 29
7.4 HOB SamPLE COOEomrerrereerreerseesseesseesseessesssessseessesssesssesss s sssesssesssesssesssessssssssssssssssssssssssssesns 29

7.4.1 Hob Infrastructure Sample COde...reresessessssssssssessesessssssns 30

7.4.2 Hob Parsing Sample Code.... 30

7.4.3 GUID HOB SamPLe COAE ..ueeeeerersersesssesssessssessessessssssessssssssssssssssssssssseens 31
FSP Configuration FIrMWAre File ... essesssesssesssesssessss s sssssasesans 32
8.1 VPD/UPD Data STrUCTUIE ...ttt et sssssses s ssssssssssssssssssssassssessessssassassens 33

8.1.1 VPD Data REGION ... ssssssssssssssses 33

8.1.2 UPD Data REGION ... ssnens 34
o Lo] £SO 37

Other Host Boot Loader Concerns

10.1T Power Management ...

10.2 BuS ENUMEration ...t sessesseseseeens

10.3 SeCUrity e

10.4 64-bit Long Mode.....cconrivenrererreenens

10.5 Pre-0S Graphicsonenrererneennens

HOB Parsing SAmMPLE COOO ..t sesseesses e seesssssessssssessessssssessesss s esssssssssssssssssssssssssasens 39
Sample Code to FINA FSP HEAEN ... receeeeeeeesetseseses s sssss s sssesse s sssesesns 55
Memory DOWN CONFIGUIATION ...ttt eses s s e ssennes 58
Sample Code to Find FSP UPD_DATA_REGION.....eeeereereeses s ssesssssesseens 62
POIt80 POST COUES...crmirrirmnermseesseessesssessssessssssssss s s s sssssssssesssses s s sasssssssssssssssssssssssssssssssssass 64
E.1 TEMPRAMINIT. oottt es e s bbbt 64
E.2 =] 0] [VL PPN 64

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

4

September 2015

°
Introduction l n tel

Revision History

Date Revision Description

September 2015 1.2 Updated Section 6.6.6 Description.

Updated Section 6.7 NotifyPhaseEntry.
Updated Section 6.7.2.1 Related Definitions.
Updated Section 8.1.2 UPD Date Region.

April 2015 1.1 Updated Section 6.4 Exit Convention.

Added Section 7.2 FSP Reserved Memory Resource Descriptor HOB.
Added to Section 7.4.2 Hob Parsing Sample Code.

Added to Section 8.1.2 UPD Data Region.

Updated product name to Intel” Atom™ Processor C2000 Product Family for
Communications Infrastructure.

February 2014 1.0 Initial public release.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
5

i n te | ® > Introduction

Introduction

1.1

1.2

1.3

1.4

Purpose

The purpose of this document is to describe the steps required to integrate the Intel’
Atom™ Processor C2000 Product Family for Communications Infrastructure Firmware
Support Package (FSP) into a boot loader solution.

Intelligent Systems and Embedded Ecosystem Overview

Contrasting the PC ecosystem where hardware and software architecture are following
a set of industry standards, the Intelligent Systems (embedded) ecosystem often does
not adhere to the same industry standards. Design engineers for Intelligent Systems
and Embedded Systems frequently combine components from different vendors with a
set of very distinct functions in mind.

The criteria for picking the right boot loader are often based on boot speed and code
size. The boot loader also frequently has close ties with the OS from a functionality
perspective. To give freedom to customers to choose the best boot loader for their
applications, Intel provides the Firmware Support Package (FSP) to satisfy the needs of
design engineers.

Intended Audience
This document is targeted at all platform and system developers who need to consume

FSP binaries in their boot loader solutions. This includes, but is not limited to: system
BIOS developer, boot loader developer, system integrators, as well as end users.

Related Documents

e Platform Initialization (PI) Specification located at http://www.uefi.org/specs/.

e Intel” Firmware Support Package: Introduction Guide — available at
http://www.intel.com/fsp

e Binary Configuration Tool for Intel” Firmware Support Package — available at
www.intel.com/fsp

e Intel’ Atom™ Processor C2000 Product Family for Communications Infrastructure
SoC SPI Flash Programming User Guide - CDI Doc #519715

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
6

September 2015

http://www.uefi.org/specs/
http://www.intel.com/fsp
http://www.intel.com/fsp

- ®
Introduction l n tel
1.5 Conventions
To illustrate some of the points better, the document will use code snippets. The code
snippets follow the GNU C Compiler and GNU Assembler syntax.
1.6 Acronyms and Terminology
Acronym Description

BSP Boot Strap Processor

BWG BIOS Writer's Guide

CRB Customer Reference Board

FSP Firmware Support Package

FSP API Firmware Support Package Interface
FWG Firmware Writer's Guide
VI In Vehicle Infotainment

NBSP Node BSP

RSM Resume to OS from SMM

SBSP System BSP

SMI System Management Interrupt

SMM System Management Mode

TSEG Memory Reserved at the Top of Memory to be used as SMRAM

8
Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

September 2015 Integration Guide

7

i n te I ' > FSP Overview

FSP Overview

2.1

2.2

Design Philosophy

Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. After Intel provides the key information, most experienced
firmware engineers can make the rest of the system work by studying specifications,
porting guides, and reference code.

Technical Overview

The Intel” Firmware Support Package (FSP) provides chipset and processor initialization
in a format that can easily be incorporated into many existing boot loaders.

The FSP performs all the necessary initialization steps as documented in the BWG
including initialization of the CPU, memory controller, chipset and certain bus
interfaces, if necessary.

FSP is not a stand-alone boot loader; therefore it needs to be integrated into a host
boot loader to carry out other boot loader functions, such as: initializing non-Intel
components, conducting bus enumeration, and discovering devices in the system and
all industry standard initialization.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
8

September 2015

FSP Integration l n te l ®

3 FSP Integration

The FSP binary can be integrated easily into many different boot loaders, such as
Coreboot, etc. and also into an embedded OS directly.

Below are some required steps for the integration:
e Customizing

The static FSP configuration parameters are part of the FSP binary and can be
customized by external tools that will be provided by Intel.

e Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location that is different from the preferred address
specified during building the FSP.

e Placing

After the FSP binary is ready for integration, the boot loader build process needs to
be modified to place this FSP binary at the specific rebasing location identified
above.

e Interfacing

The boot loader needs to add code to setup the operating environment for the FSP,
call the FSP with the correct parameters and parse the FSP output to retrieve the
necessary information returned by the FSP.

3.1 Assumptions Used in this Document

Because the Intel” Atom™ Processor C2000 Product Family for Communications
Infrastructure FSP is built with a preferred base address of OxFFF80000, the FSP binary
is assumed to be placed at the same address as part of the boot loader build.

8

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
9

in te|> Boot Flow

4 Boot Flow

The figure below shows the boot flow from the reset vector to the OS handoff for a
typical boot loader. The APIs are described in more detail in the following sections.

. Reset Load ParSS Return
B ata
- I Vector Microcode
."}_' !
i .
Switch Temp Ram Platform Init
to 32-bit Init
Mode
Mem Init Bus and_ Device
Paraml = Init
o Find FSP
Temp RAM EIREE
Enumeration
;2;%n;$ogoot T J”me IOI CPU& P —
R Companion oot Device Init

v Chip init

Ready to Boot

NotifyPhas

Load OS
or other
payload

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
10

FSP Binary Format

FSP Binary Format

The FSP is distributed in binary format. The FSP binary contains an FSP-specific
FSP_INFORMATION_HEADER structure, the initialization code/data needed by the
Intel Silicon supported by the FSP and a configuration region that allows the boot
loader developer to customize some of the settings through a tool provided by Intel.

5.1 FSP Header
The FSP header conveys the information required by the boot loader to interface with
the FSP binary such as providing the addresses for the entry points, configuration
region address, etc.
Byte Size Field Description
Offset in
Bytes
0 4 Signature ‘FSPH'. Signature for the FSP Information Header.

4 4 HeaderLength Length of the header

8 3 Reserved Reserved

11 1 HeaderRevision Revision of the header.

12 4 ImageRevision Revision of the FSP Binary.

The ImageRevision can be decoded as follows
0.7 - Minor Version

8..15 - Major Version

16..31 - Reserved

16 8 Image Id 8-byte signature strings that will help match the FSP
Binary to a supported hardware configuration.

For the Intel” Atom™ Processor C2000 Product Family for
Communications Infrastructure FSP, the Image Id will be
“AVN-FSP”

24 4 ImageSize Size of the entire FSP Binary.

28 4 ImageBase FSP binary preferred base address. If the FSP binary will
be located at the address different from the preferred
address, the rebasing tool is required to relocate the base
before the FSP binary integration.

For the Intel” Atom™ Processor C2000 Product Family for
Communications Infrastructure FSP, the default ImageBase
is OxFFF80000.

32 4 ImageAttribute Attributes of the FSP binary.

36 4 CfgRegionOffset Offset of the configuration region. This offset is relative to
the FSP binary base address.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide

11

i n te | ® > FSP Binary Format

Byte Size Field Description
Offset in
Bytes

40 4 CfgRegionSize Size of the configuration region.

44 4 ApiEntryNum Number of API Entries this FSP supports. The current
design supports 3 APIs as given below.

48 4 TempRamlInitEntryOffset | The offset for the API to setup a temporary stack till the
memory is initialized.

52 4 FsplnitEntryOffset The offset for the API to initialize the CPU and the Chipset
(SOQ).

56 4 NotifyPhaseEntryOffset The offset for the API to inform the FSP about the different
stages in the boot process.

60 4 Reserved Reserved

5.1.1 Finding the FSP Header

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization (PI)
specification - Volume 3: Shared Architectural Elements specification and can be
downloaded from http://www.uefi.org/specs/

FV is a way to organize/structure binary components and enables a standardized way
to parse the binary and handle the individual binary components that make up the FV.

The FSP_INFORMATION_HEADER is a firmware file and is placed as the first firmware
file within the firmware volume. All firmware files will have a GUID that can be used to
identify the files, including the FSP Header file. The FSP header firmware file GUID is
defined as 912740BE-2284-4734-B971-84B027353F0C.

The boot loader can find the offset of the FSP header within the FSP binary by the
following steps described below:

e Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip the
standard and extended FV header.

e The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID is
located at the 8-byte aligned offset following the FV header.

e The EFI_RAW_SECTION header follows the FFS File Header.

e Immediately following the EFI_RAW_SECTION header is the raw data. The format
of this data is defined in the FSP_INFORMATION_HEADER structure.

e Refer to Appendix B for a sample code snippet that does the above steps in a
stackless environment.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
12

http://www.uefi.org/specs/

FSP Binary Format : -l n te l ® >

5.1.2 FSP Header Offset

To simplify the integration of the FSP binary with a boot loader, the offset of the FSP
header will be provided with the FSP binary documentation. In this case, the boot
loader may choose to skip the generic algorithm to find the FSP header as described
above, but instead use the hardcoded value for the FSP header offset. This approach is
easier to implement from the boot loader side.

For the Intel” Atom™ Processor C2000 Product Family for Communications
Infrastructure FSP, the FSP header is placed at an offset of 0x94. So, for example, if the
FSP binary is placed at OXFFF80000 after the final build, the FSP header can be located
at OxFFF80094. This implies that

e The offset of the TempRamInitEntry can be found at OxFFF800C4
e The offset of the FsplnitEntry can be found at OxFFF800C8
e The offset of the NotifyPhaseEntry can be found at OxFFF800CC

8

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

September 2015 Integration Guide
13

i n te | ® > FSP Interface (FSP API)

FSP Interface (FSP API)

6.1

6.2

6.3

Entry-Point Calling Assumptions

There are some requirements regarding the operating environment for FSP execution.
Itis the responsibility of the boot loader to set up this operating environment before
calling the FSP API. These conditions have to be met before calling any entry point or
the behavior is not determined. These conditions include:

e System is in flat 32-bit mode.
e Both the code and data selectors should have full 4GB access range.
e Interrupts should be turned off.

e The FSP API should be called only by the System BSP, unless otherwise noted.

Other requirements needed by individual FSP APl will be covered in their respective
sections.

Data Structure Convention

All data structure definitions should be packed using compiler provided directives such
as #pragma pack(1) to avoid alignment mismatch between FSP and the boot loader.

Entry-Point Calling Convention

All FSP APIs defined in the FSP information header are 32-bit only. The FSP API
interface is similar to the default C __cdecl convention. Like the default C __cdecl
convention, with the FSP API interface:

e All parameters are pushed onto the stack in a right-to-left order before the APl is
called.

e The calling function needs to clean the stack up after the APl returns.

e The return value is returned in the EAX register. All the other registers are
preserved.

There are, however, a couple of notable exceptions with the FSP APl interface
convention. Refer to individual API description for any special notes and these
exceptions.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

14

September 2015

FSP Interface (FSP API) l n te l ®

6.4 Exit Convention

The TempRamlInit API preserves all general purpose registers except EAX, ECX and
EDX. Because this FSP APl is executing in a stackless environment, the floating point
registers may be used by the FSP to save/return other general purpose registers to the
boot loader.

The Fsplnit and the FspNotify interfaces preserves all the general purpose registers
except “eax”. The return status is passed back through the eax register.

The FSP reserves some memory for its internal use and the memory region that is used
by the FSP is passed back through a HOB. This is a generic resource HOB, but the
owner field of the HOB will identify the owner as FSP. Refer to Section 7 FSP Output for
more details. The boot loader is expected not to use this memory except to parse the
HOB output. The boot loader is also expected to mark this memory as reserved when
constructing the memory map information to be passed to the OS.

6.5 TempRamlInitEntry

This FSP APl is called soon after coming out of reset and before memory and stack are
available. This FSP API loads the microcode update, enables code caching for the
region specified by the boot loader and also sets up a temporary stack to be used until
main memory is initialized.

A hardcoded stack can be set up with the following values and the “esp” register
initialized to point to this hardcoded stack.

e The return address where the FSP will return control after setting up a temporary
stack

e A pointer to the input parameter structure

However, because stack is in ROM and not writeable, this FSP API cannot be called
using the “call” instruction, but needs to be jumped to.

This API should be called only once after the system comes out the reset, and it must
be called before any other FSP APIs. The system needs to go through a reset cycle
before this APl can be called again. Otherwise, unexpected results may occur.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
15

6.5.1

6.5.2

6.5.3

6.5.3.1

FSP Interface (FSP API)

Prototype

typedef
FSP_STATUS
(FSPAPI *FSP_TEMP_RAM_INIT) (
IN FSP_TEMP_RAM_INIT_PARAMS *TempRamInitParamPtr

Parameters

TempRaminitParamPtr

Address pointer to the FSP_TEMP_RAM_INIT_PARAMS structure. The structure
definition is provided below under Related Definitions. The structure has a pointer
to the base of a code region and the size of it. The FSP enables code caching for
this region. Enabling code caching for this region should not take more than one
MTRR pair. The structure also has a pointer to a microcode region and its size. The
microcode region may have multiple microcodes packed together one after the
other and the FSP tries to load all the microcodes that it finds in the region that are
compatible with the silicon it is supporting. This microcode region is remembered
by FSP so that it can be used to load microcode for all APs later on during the
Fsplnit API call.

Related Definitions

typedef struct {

UINT32 MicrocodeRegionBase,
UINT32 MicrocodeRegionLength,
UINT32 CodeRegionBase,

UINT32 CodeRegionLength

} FSP_TEMP_RAM_INIT_PARAMS;

Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to a
temporary but writeable memory range available to the boot loader and return with
FSP_SUCCESS in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. Boot loader is free to use the
whole range described. Typically the boot loader can reload the ESP register to point to
the end of this returned range so that it can be used as a standard stack.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

16

September 2015

FSP Interface (FSP API) : -l n te | ® >

All FSP APIs will return a status code to indicate the APl execution result. FSP reuses a
subset of the standard status codes defined in EDK Il defined. They are listed as shown
below.

#tdefine FSP_SUCCESS 0x00000000

#define FSP_INVALID_PARAMETER 0x80000002
#define FSP_UNSUPPORTED 0x80000003
#tdefine FSP_NOT_READY 0x80000006

#tdefine FSP_DEVICE_ERROR 0x80000007
#define FSP_OUT_OF_RESOURCES 0x80000009
#define FSP_VOLUME_CORRUPTED 0x8000000A
#tdefine FSP_NOT_FOUND 0x8000000E

#define FSP_TIMEOUT 0x80000012

#define FSP_ABORTED 0x80000015

#define FSP_INCOMPATIBLE_VERSION 0x80000010
#tdefine FSP_SECURITY_VIOLATION 0x8000001A
#define FSP_CRC_ERROR 0x8000001B

Note: This returned range is just a sub-region of the whole temporary memory initialized by
the processor. FSP maintains and consumes the remaining temporary memory. It is
important for the boot loader not to access the temporary memory beyond the
returned boundary.

FSP_SUCCESS Temp RAM was initialized successfully.
FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_NOT_FOUND No valid microcode was found in the microcode region.
FSP_UNSUPPORTED The FSP calling conditions were not met.
FSP_DEVICE_ERROR Temp RAM initialization failed
FSP_ALREADY_STARTED Temp RAM initialization has been invoked

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
17

i n te | ® > FSP Interface (FSP API)

6.5.3.2

Sample Code
-global basic_init
basic_init:

#
Parse the FV to find the FSP INFO Header
#
lea findFspHeaderStack, %esp
jmp find_fsp_info_header
findFspHeaderDone:
mov %eax, %ebp # save fsp header address in ebp
mov Ox30(%ebp), %eax # TempRamlnit offset in the header
add Ox1lc(%ebp), %eax # add FSP base to get the APl address

lea tempRamlnitStack, %esp # initialize to a rom stack
#

call FSP PEI to setup temporary Stack

#

jmp *%eax

temp_Ramlnit_done:
addl $4, %esp
cmp $0, %eax

jz continue

#

TempRamInit failed, dead loop
#

/* EAX - Return value, defined in
src/mainboard/intel/mohonpeak/fsptypes.h */

Jmp

continue:
#
Save FSP_INFO_HEADER in ebx
#
mov %ebp, %ebx

#

setup bootloader stack
ecx: stack base

edx: stack top

#

lea -4(%edx), %esp

#

call C based early_init to initialize meomry and chipset.
Pass the FSP INFO

Header address as a paramater

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
18

September 2015

FSP Interface (FSP API)

September 2015

#

push %ebx

call early_init

#

should never return here

#

imp

.align 4
findFspHeaderStack:

.long findFspHeaderDone

tempRamlnitParams:

-long _ucode_ base # Microcode base address

-long _ucode_size # Microcode size

.long OxFfFf30000 # Code Region Base

-long 0x00040000 # Code Region Length
tempRamlnitStack:

-long temp_Ramlnit_done # return address

.long tempRamlnitParams # pointer to parameters

/** C Based Basic Initialization
*

* Platform configuration with Temp Stack starts here.
*/

void early_init (FSP_INFO_HEADER *fsp_info)

{

7/
// Call Fsplnit API
//

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
19

i n te | ® > FSP Interface (FSP API)

6.5.4

6.6

6.6.1

6.6.2

Description

The entry to this function is in a stackless/memoryless environment. After the boot
loader completes its initial steps, it finds the address of the FSP INFO HEADER and then
from the header finds the offset of the TempRamlInit function. It then converts the
offset to an absolute address by adding the base of the FSP binary and calls the
TempRamlnit function.

This temporary memory is intended to be primarily used by the boot loader as a stack.
After this stack is available, the boot loader can switch to using C functions. This
temporary stack should be used to do only the minimal initialization that needs to be
done before memory can be initialized by the next call into the FSP.

The FSP initializes the ECX and EDX registers to point to a temporary but writeable
memory range. Register ECX points to the start of this temporary memory range and
EDX points to the end of the range. The size of the temporary stack for the platform can
be calculated by taking the range between ECX and EDX.

FspInitEntry

This FSP APl is called after TempRamlInitEntry. This FSP APl initializes the memory, the
CPU and the chipset to enable normal operation of these devices. This FSP APl accepts
a pointer to a data structure that will be platform dependent and defined for each FSP

binary. This will be documented with each FSP release.

The boot loader provides a continuation function as a parameter when calling Fsplnit.
After Fsplnit completes its execution, it does not return to the boot loader from where it
was called, but instead returns control to the boot loader by calling the continuation
function.

Prototype
typedef
FSP_STATUS
(FSPAPI *FSP_FSP_INIT) (
INOUT FSP_INIT_PARAMS *FsplnitParamPtr
)
Parameters
FspInitParamPtr Address pointer to the FSP_INIT_PARAMS

structure.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

20

September 2015

FSP Interface (FSP API) -l n te l @>

6.6.3 Related Definitions
typedef struct {

VOID *NvsBufferPtr;

VOID *RtBufferPtr;

CONTINUATION_PROC ContinuationFunc;
} FSP_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage data buffer.
RtBufferPtr Pointer to the runtime data buffer.

ContinuationFunc Pointer to a continuation function provided by the boot loader.

typedef VOID (* CONTINUATION_PROC)(
IN FSP_STATUS Status,

IN VOID *HobListPtr
);
Status Status of the FSP Init API.
HobBufferPtr Pointer to the HOB data structure defined in the PI

specification.

The FSP_INIT_RT_BUFFER structure, including dependent structures, for the Intel’
Atom™ Processor C2000 Product Family for Communications Infrastructure FSP is
defined below.

typedef struct {
FSP_INIT_RT_COMMON_BUFFER Common;
FSP_INIT_RT_PLATFORM_BUFFER Platform;}
FSP_INIT_RT_BUFFER;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
21

i n te | ® > FSP Interface (FSP API)

typedef struct {
UINT32 *StackTop;
UINT32 BootMode;
} FSP_INIT_RT_COMMON_BUFFER;

typedef struct {
CONST MEM_DOWN_DIMM_CONFIG *MemDownDimmConfig[2][2];

} FSP_INIT_RT_PLATFORM_BUFFER;

See Appendix C for further details on the MEM_DOWN_DIMM_CONFIG structure.

6.6.4 Return Values
FSP_SUCCESS FSP execution environment was initialized successfully.
FSP_INVALID_PARAMETER Input parameters are invalid.
FSP_UNSUPPORTED The FSP calling conditions were not met.
FSP_DEVICE_ERROR FSP initialization failed

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
22

FSP Interface (FSP API) l n te l ®

6.6.5

September 2015

Sample Code

typedef VOID (* CONTINUATION_PROC)(EFI1_STATUS Status, VOID
*HobListPtr);

typedef struct {
void *NvsBufferPtr;
void *RtBufferPtr;
CONTINUATION_PROC ContinuationFunc;
} FSP_INIT_PARAMS;

typedef struct {
UINT32 *StackTop;
UINT32 BootMode;
} FSP_INIT_RT_COMMON_BUFFER;

typedef struct {
FSP_INIT_RT_COMMON_BUFFER Common;
} FSP_INIT_RT_BUFFER;

#define FSPAPI __ attribute__ ((cdecl))
typedef FSP_STATUS (FSPAPI *FSP_FSP_INIT) (FSP_INIT_PARAMS
*FsplnitParamPtr);

void early_init (FSP_INFORMATION HEADER *fsp_info)
{

uint32_t FspInitEntry;
FSP_FSP_INIT FsplnitApi;
volatile FSP_INIT_PARAMS FsplnitParams;
volatile FSP_INIT_RT_BUFFER FspRtBuffer;

memset((void*)&FspRtBuffer, 0, sizeof(FSP_INIT_RT_BUFFER));

FspRtBuffer.Common.StackTop = & stack top;

FsplnitParams.NvsBufferPtr = get NVRAM ptr();

FspRtBuffer.Common.BootMode = get BootMode();

FsplnitParams.RtBufferPtr = (FSP_INIT_RT BUFFER
*)&FspRtBuffer;

FsplnitParams.ContinuationFunc =
(CONTINUATION_PROC)ContinuationFunc;

FsplnitApi = (FSP_FSP_INIT) (fsp_info->ImageBase + fsp_info-
>FspInitEntry);

FsplnitApi (&FsplnitParams);

/* Should never return. Control will continue from
ContinuationFunc */
while (1);

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
23

i n te | ® > FSP Interface (FSP API)

6.6.6

}

void ContinuationFunc (EFI_STATUS Status, VOID *HobListPtr)
{

/* Update global variables */
FspHobListPtr = HobListPtr;

__asm__ _ volatile__ (
"movl %%ebx, %O\n\t" /* The FSP_INFO_HEADER is saved in
EBX after TempRamlnit API call*/
"=r"(fsp_info_header));

/* Continue the boot */
advancedInit ();

/* Should never return */
while (1);

Description

One of the data that will be part of the FSP_INIT_PARAMS. RtBufferPtr will be the
“StackTop". This will pass the address of the stack top where the boot loader wants to
establish the stack after memory is initialized and available for use.

ContinuationFunc is a function entry point that will be jumped to at the end of the
Fsplnit() to transfer control back to the boot loader.

This Fsplnit APl initializes the permanent memory and switches the stack from the
temporary memory to the permanent memory as specified by StackTop. Sometimes
switching stack in a function can cause some unexpected execution results because the
compiler is not aware of the stack change during runtime and the precompiled code
may still refer to the old stack for data and pointers. A stack switch, therefore, requires
assembly code to patch the data for the new stack location, which may lead to
compatibility issues. To avoid such possible compatibility issues introduced by
different compilers and to ease the integration of FSP with a boot loader, the APl uses
the “ContinuationFunction” parameter to continue the boot loader execution flow
rather than returning as a normal C function. Although this APl is called as a normal C
function, it never returns.

The FSP needs to get some parameters from the boot loader when it initializes the
silicon. These parameters are passed from the boot loader to the FSP through the
RtBuffer structure pointer.

The FSP returns a data structure which must be saved in a non-volatile memory such as
SPI flash and the boot loader must pass the pointer to this structure (through
NvsBufferPtr) back to the Fsplnit APl upon every initialization.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

24

September 2015

FSP Interface (FSP API) : -l n te l ® >

6.7

6.7.1

6.7.2

September 2015

Note:

Note:

S3 is not supported on Intel” Atom™ Processor C2000 Product Family for
Communications Infrastructure. Therefore, the BootMode parameter for Intel” Atom"
Processor C2000 Product Family for Communications Infrastructure FSP currently
supports BOOT_WITH_FULL_CONFIGURATION only.

M

The BootMode parameter is used by the boot loader to let FSP know what boot path
the platform is taking. It is used in conjunction with the data passed in via NvsBufferPtr,
to cater for modes such as S3 resume.

During execution the FSP builds a series of data structures containing information
useful to the boot loader, such as information on system memory.

This API should be called only once after the TempRamlnit API.

BIOS_RESET_DONE is set at the start of FsplnitEntry APl. The bootloader must ensure
that, on the Intel” Atom™ Processor C2000 Product Family, the FsplnitEntry API is
called within one second of the TempRamInitEntry having returned. Otherwise, the
platform may reset.

NotifyPhaseEntry

This FSP APl is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases are platform dependent and are documented with the FSP release.
Examples of boot phases include “post pci enumeration” and “ready to boot".

The FSP locks the configuration registers to enhance security as required by the BWG
when it is notified that the boot loader is ready to transfer control to the operating
system.

Prototype
typedef

FSP_STATUS
(FSPAPI *FSP_NOTFY_PHASE) (
IN NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr

Parameters
NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PRAMS

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
25

i n te | ® > FSP Interface (FSP API)

6.7.2.1 Related Definitions
typedef enum {

EnumInitPhaseAfterPciEnumeration = 0x20,
EnumlnitPhaseReadyToBoot = 0x40
} FSP_INIT_PHASE;

typedef struct {
FSP_INIT_PHASE Phase;
} NOTIFY_PHASE_PARAMS;

EnumInitPhaseAfterPciEnumeration

This stage is notified when the boot loader completed the PCl enumeration and the
resource allocation for the PCl devices is complete. FSP will use it to do some specific
initialization for processor and chipset that requires PCl resource assignment.

EnumInitPhaseReadyToBoot

This stage is notified just before the boot loader hands off to the OS loader. FSP uses it
to do some specific initialization for processor and chipset that is required before
control is transferred to the OS. During this phase the FSP locks the configuration
registers to enhance security as required by the BWG.

6.7.3 Return Values
FSP_SUCCESS The notification was handled successfully.
FSP_UNSUPPORTED The notification was not called in the proper order.
FSP_INVALID_PARAMETER The notification code is invalid.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
26

FSP Interface (FSP API) l n te l ®

6.7.4 Sample Code

#define FSPAPI __ attribute__ ((cdecl))

typedef UINT32 FSP_STATUS;
typedef FSP_STATUS (FSPAPI *FSP_NOTFY_PHASE)
(NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr);

typedef enum {
EnumInitPhaseAfterPciEnumeration = 0x20,
EnumlnitPhaseReadyToBoot = 0x40

} FSP_INIT_PHASE;

typedef struct {
FSP_INIT_PHASE Phase;
} NOTIFY_PHASE_PARAMS;

void FspNotifyPhase (uint32_t Phase)

{
FSP_NOTFY_PHASE NotifyPhaseProc;
NOTIFY_PHASE_PARAMS NotifyPhaseParams;
FSP_STATUS Status;

/* call FSP PEl to Notify PostPciEnumeration */

NotifyPhaseProc = (FSP_NOTFY_PHASE) (fsp_info_header-
>ImageBase + fsp_info_header->NotifyPhaseEntry);

NotifyPhaseParams.Phase = Phase;

Status = NotifyPhaseProc (&NotifyPhaseParams);

if (Status '= 0) {

printf("'FSP APl NotifyPhase failed for phase %d!\n",

Phase);

}
}

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
27

i n te l > FSP Output

FSP Output

7.1

The FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it
progresses through initializing the silicon. These data structures conform to the HOB
format as described in the Platform Initialization (Pl) specification - Volume 3: Shared
Architectural Elements specification and can be downloaded from
http://www.uefi.org/specs/

The user of the FSP binary is strongly encouraged to go through the specification
mentioned above to understand the HOB design details and create a simple
infrastructure to parse the HOBs, because the same infrastructure can be reused with
different FSP across different platforms.

It's left to the boot loader developer to decide how to consume the information passed
through the HOBs produced by the FSP. For example, even the specification mentioned
above describes about nine different HOBs; most of this information may not be
relevant to a particular boot loader. For example, a boot loader design may be
interested only in knowing the amount of memory populated and may not care about
any other information.

The section below describes the GUID HOBs that are produced by the FSP. GUID HOB
structures are non-architectural in the sense that the structure of the HOB needs is not
defined in the HOB specifications. So the GUID and the data structure are documented
below to enable the boot loader to consume these HOB data.

Refer to the specification for details about the HOBs described in the Platform
Initialization (Pl) specification - Volume 3: Shared Architectural Elements specification.

Boot Loader Temporary Memory Data HOB

As described in the Fsplinit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the sub region of the
temporary memory returned in the TempRamlnit APl may still contain boot loader-
specific data that might be useful for the boot loader even after the Fsplnit call. So
before destroying the temporary memory, all contents in this sub region are migrated
to the permanent memory. FSP builds a boot loader temporary memory data HOB,
which it can use to access the data saved in the temporary memory after Fspinit API if
necessary. If the boot loader does not care about the previous data, this HOB can be
simply ignored.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

28

September 2015

http://www.uefi.org/specs/

FSP Output

7.2

7.3

7.4

September 2015

This HOB follows the EF1_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \

{ Oxbbcff46c, 0xc8d3, 0x4113, { O0x89, 0x85, 0xb9, 0Oxd4, OxF3,
0xb3, Oxf6, Ox4e } };

FSP Reserved Memory Resource Descriptor HOB

The FSP reserves some memory for its internal use and a descriptor for this memory
region used by the FSP is passed back though a HOB. This is a generic resource HOB,
but the owner field of the HOB identifies the owner as FSP.

#define FSP_HOB_RESOURCE_OWNER_FSP GUID \

{ 0x69a79759, 0x1373, 0x4367, { Oxa6, Oxc4, Oxc7, Oxf5, Ox%e,
Oxfd, 0x98, Ox6e } }

Non-Volatile Storage HOB
#define FSP_NON_VOLATILE_STORAGE_HOB_GUID \

{ 0x72lacf02, 0x4d77, Ox4c2a, { Oxb3, Oxdc, 0x27, Oxb, Ox7b,
Oxa9, Oxe4, O0xb0O } }

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the boot
loader to save the platform configuration data into non-volatile storage so that it can
be reused in many cases, such as fastboot or a reset.

The boot loader needs to parse the HOB list to see if such a GUID HOB exists after
returning from the Fsplnit() API. If so, the boot loader should extract the data portion
from the HOB, and then save it into a platform-specific NVS device, such as flash,
EEPROM, etc. On the following boot flow the boot loader should load the data block
back from the NVS device to temporary memory and populate the buffer pointer into
FSP_INIT_PARAMS.NvsBufferPtr field before calling into the Fsplnit() API. If the NVS
device is memory mapped, the boot loader can initialize the buffer pointer directly to
the buffer.

HOB Sample Code

An example function using the HOB infrastructure and getting the memory information
is provided below.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
29

i n te l > FSP Output

7.4.1 Hob Infrastructure Sample Code

Refer to Appendix A for sample code.

7.4.2 Hob Parsing Sample Code
void
GetMemorySize (
UINT32 *LowMemoryLength,
void *HobBufferPtr
)
{

EF1_PEI_HOB_POINTERS Hob;
*LowMemoryLength = 0x100000;

//

// Get the HOB list for processing
//

Hob.Raw = HobBufferPtr;

//
// Collect memory ranges
//
while (YEND_OF HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR)

if (Hob.ResourceDescriptor->ResourceType ==

EFI_RESOURCE_SYSTEM_MEMORY) {

//

// Need memory above 1MB to be collected here

//

if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000 &&

Hob.ResourceDescriptor->PhysicalStart <
(EFI_PHYSICAL_ADDRESS) 0x100000000) {
*LowMemoryLength += (UINT32) (Hob.ResourceDescriptor-

>ResourcelLength);

}
}
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return;
¥
void
GetFspReservedMemoryFromGuid (
UINT32 *FspMemoryBase,

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
30

FSP Output

7.4.3

September 2015

UINT32 *FspMemoryLength,
EFI_GUID FspReservedMemoryGuid
)

EFI_PEI_HOB_POINTERS Hob;

//

// Get the HOB list for processing

//

Hob.Raw = GetHobList();
*FspMemoryBase = O;
*FspMemoryLength = 0O;
//
// Collect memory ranges
//
while (YEND_OF _HOB_LIST (Hob)) {
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR)

if (Hob.ResourceDescriptor->ResourceType ==

EF1_RESOURCE_MEMORY_ RESERVED) {

if (CompareGuid(&Hob.ResourceDescriptor->0wner,

&FspReservedMemoryGuid)) {

*FspMemoryBase = (UINT32) (Hob.ResourceDescriptor-

>PhysicalStart);

*FspMemoryLength = (UINT32) (Hob.ResourceDescriptor-

>ResourcelLength);

break;
3
3
}
Hob_Raw = GET_NEXT_HOB (Hob);
3
return;

GUID HOB Sample Code

void *
GetGuidHobData (

CONST EFI_GUID *Guid
)

VOID *GuidHob;

GuidHob = GetFirstGuidHob (Guid);
if (GuidHob == NULL) {
return NULL;

return (void *)GET _GUID HOB_ DATA (GuidHob);

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
31

l n te I : > FSP Configuration Firmware File

8 FSP Configuration Firmware File

The FSP binary contains a configurable data region that is used by the FSP during the
initialization. The configurable data region has two sets of data:

e VPD - Vital Product Data, which can only be configured statically

e UPD - Updatable Product Data, which can be configured statically for default
values, but also can be overridden during boot at runtime.

Both the VPD and UPD parameters can be statically customized using a separate tool
called the Binary Configuration Tool (BCT) as explained in the tools section. The tool
uses a Boot Setting File (BSF) to understand the layout of the configuration region
within the FSP.

In addition to static configuration, the UPD data can be overridden by the boot loader
during runtime. The UPD data is organized as a structure. The Fsplnit APl parameter
includes an UpdDataRgnPtr pointer, which can be initialized to point to the UPD data
structure. If this pointer is initialized to NULL when calling the Fsplnit API, the FSP uses
the default built-in UPD configuration data in the FSP binary. However, if the boot
loader wants to override any of the UPD parameters, it has to copy the whole UPD
structure from flash to memory, override the parameters, initialize the UpdDataRgnPtr
pointer to the address of the UPD structure with updated data in memory, and call
Fsplnit API. The FSP uses this data structure instead of the default configuration region
data for platform initialization. The UPD data structure pointed by pointer
UpdDataRgnPtr is a project-specific structure; refer to_Section 8.1 for the details of this
structure.

When calling the Fsplnit API, the stack is in temporary RAM where the UPD data
structure is copied, updated, and passed to the FSP APl. When permanent memory is
initialized, the FSP sets up a new stack in the permanent memory. However, the FSP
saves the stack that was in the Temporary Memory in a HOB. If the boot loader wants to
refer to the modified UPD Data, it can be done by parsing the HOB, which has the
Temporary Stack’s data. Both the VPD and the UPD structure definitions are provided
in the file fspvpd.h, which comes in the FSP release package. To update these
configuration options statically using the BCT, a BSF file is required. This file contains
the detailed information on all configurable options, including description, help
information, valid value range, and the default value.

Refer to the RangeleyFsp.bsf file in the release package for more information.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
32

FSP Configuration Firmware File (l n tel >

8.1

8.1.1

September 2015

VPD/UPD Data Structure

As stated above, the VPD/UPD data structure and related structure definitions are
provided in the file fspvpd.h. The basic information for each option is provided in the
BCT configuration file RangeleyFsp.bsf. The user can use the BCT tool to load this BSF
file to get the detailed configuration option information.

VPD Data Region

This VPD_DATA_REGION region can only be configured statically by the BCT tool.
Only very limited options in this region can be configured. Most of the configurable
options are provided in the UPD data region.

Below is some additional information for some of the fields in VPD_DATA_REGION.
PcdVpdRegionSign

This field is not an option. Itis a signature for the VPD data region. It can be used by
the boot loader to validate the VPD region. This field will not change across different
FSP releases for the same silicon.

PcdImageRevision

This field is not an option. Itis a revision ID for the FSP release. It can be used by the
boot loader to validate the VPD/UPD region. If the value in this field is changed for a
FSP release, the boot loader should not assume the same layout for
UPD_DATA_REGION/VPD_DATA_REGION data structure. Instead it should use the new
fspvpd.h coming with the FSP release package.

PcdUpdRegionOffset

This field is not an option. It contains the offset of the UPD data region within the FSP
release image. The boot loader can use it to find the location of UPD_DATA_REGION.
Refer to Appendix D — Sample Code to Find FSP UPD_DATA_REGION.

PcdFspReservedMemorylLength

This option is used to specify the reserved memory size for the FSP usage. FSP will
consume certain memory resource during the initialization and this memory range
must be reserved. This range will be reported through the GUIDed HOB mentioned in
Section 7.2. In most of the cases it does not need change.

PcdSpdWriteProtect

Used to enable/disable SPD Write Protect. Disabling this protection allows writes to
slaves OxAO — OXAE. After completing SPD flow, it is highly recommended that the Boot
Loader set SPD_WD. This will prevent any future Writes (accidental or malicious) to the
DIMM EEPROMSs: a malicious Write could corrupt an EEPROM and cause a Permanent
Denial of Service (platform won't boot) until the DIMM is replaced. A platform may be
designed such that SMBusO segment includes EEPROMs, other than DIMM EEPROM.
(Not Intel recommended.) In this case, if the ODM expects Write access by a regular SW

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
33

l n te I : > FSP Configuration Firmware File

driver or by BIOS/SMM at a later time, it is possible to leave SPD_WD cleared. However,
the ODM should know that this exposes the DIMM EEPROMs to the security
vulnerability noted above.

8.1.2 UPD Data Region

This UPD_DATA_REGION region can be configured statically by the BCT tool in the
same way as VPD data region. However, this region can also be overridden by the boot
loader at runtime. It provides more flexibility for the boot loader to change the options
dynamically basing on certain conditions.

The fields in UPD_DATA_REGION are described below.

Signature

This field is not an option. Itis a signature for the UPD data region. It can be used by
boot loader to validate the UPD region. The boot loader should never override this
field.

PcdPrintDebugMessages

Used to enable/disable printing of some debug messages during FSP execution.

PcdEnablelLan
Used to enable/disable the LAN controller on the SOC.

PcdEnableSata2

Used to enable/disable the SATA2 controller.
PcdEnableSata3

Used to enable/disable the SATA3 controller.
PcdEnablel QAT

Used to enable/disable the Intel® QuickAssist Technology.
PcdEnableUsb20

Used to enable/disable the USB2.0 controller.
PcdBifurcation

Used to configure the bifurcation setting.
PcdPcieRootPort[1-4]DeEmphasis

Used to configure PCle* root ports(1-4) De-Emphasis settings.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
34

FSP Configuration Firmware File (l n tel >

September 2015

PcdMrcRmtSupport

Used to enable/disable MRC Rank Margin Tool. If enabled, the MRC prints out the rank
margining information so that it can be used as the input for the Rank Margin Tool
(RMT) to analyze the platform memory sub-system margining. To enable it PcdFastBoot
option should be disabled because MRC fast boot path skips normal memory training
steps. To get the RMT log, you must also enable Serial Debug Messages.

PcdMrcRmtCpgcExpLoopCntValue

Used to configure Rank Margin Tool (RMT). For setting the CPGC exp_loop_cnt field for
RMT execution refer to document #535399 RMT User Guide.

PcdMrcRmtCpgcNumBursts

Used to configure Rank Margin Tool (RMT). For setting the CPGC num_bursts field for
RMT execution refer to document #535399 RMT User Guide.

PcdMrclInitTsegSize
Used to configure the size of the SMRAM memory reserved.
PcdSpdBaseAddress_[0-1]_[0-1]

The field provides the SPD SMBus address for channel [0-1] and DIMM [0-1].

PcdExtendedTemperatureEnable

If DIMM supports Extended Temperature Range, then enabling this PCD will
automatically configure the refresh rate to be double refresh rate.

If DIMM does not support Extended Temperature Range, then enabling this PCD will
have no effect.

PcdFastboot

Used to enable/disable fast boot path in MRC. Once enabled, all following boots will
use the presaved MRC data to improve the boot performance.

PcdSerialPortBaudRate

Configure the serial port baud rate for the FSP binary to one of eight predefined
standard settings. The default baud rate is 115200.

PcdCustomerRevision

Customer can add a label/version ID, max. 32 characters. This label can be retrieved by
the boot loader, see Appendix D.

PcdMemoryDown

For the design with memory down implemented on the board enable this PCD. Ifitis
disabled, it indicates the board uses the normal DIMMs and MRC will use the standard
mechanism to read the SPD data from the DIMMSs. Otherwise, it indicates the board
uses hardcoded SPD data. Refer to Appendix C— Memory Down Configuration.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
35

l n te I : > FSP Configuration Firmware File

PcdRegionTerminator

This field is not an option. It is a terminator to mark the end of the data structure. The
boot loader should never override this field.

Reserved/Unused

UPD_DATA_REGION may contain some reserved or unused fields in the data structure.
For these fields it is required to keep the original default values provided in the FSP
binary. Intel always recommends copying the whole UPD_DATA_REGION from the
flash to local structure in stack before overriding any field.

8

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide September 2015
36

Tools

9 Tools

A Binary Configuration Tool (BCT) is provided with the FSP binary that can be used on
the FSP binary to allow a user to modify certain well defined configuration values in the
FSP binary. The BCT typically provides a graphical user interface (GUI). The Binary

Configuration Tool (BCT) is provided with separate documentation that explains the
usage of the tool.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
37

September 2015

l n te l : > Other Host Boot Loader Concerns

10

Other Host Boot Loader Concerns

10.1

10.2

10.3

10.4

10.5

Power Management

Intel” FSP does not provide power management functions besides making power
management features available to the host boot loader. ACPI is an independent
component of the boot loader, and it is not included in Intel” FSP.

Bus Enumeration
Intel’ FSP initializes the CPU and the companion chips to a state such that all bus
topology can be discovered by the host boot loader.

Security

Intel” FSP does not provide security features besides making them available to the host
boot loader.

64-bit Long Mode

Intel” FSP operates in 32-bit mode; it is the responsibility of the host boot loader to
transition to 64-bit Long Mode if desired.

Pre-OS Graphics

Intel” FSP does not include graphics initialization function. For pre-OS graphics
initialization solutions, contact the local Intel representative.

§

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide

38

September 2015

®
Other Host Boot Loader Concerns l n t e l

Appendix A HOB Parsing Sample Code

September 2015

The sample code provided here was derived from the EDK2 source available for
download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

/77

/// 8-byte unsigned value.

//7/

typedef unsigned long long UINT64;

/77

/// 8-byte signed value.

//7/

typedef long long INT64;

/77

/// 4-byte unsigned value.

//7/

typedef unsigned int UINT32;

//7/

/// 4-byte signed value.

/77

typedef int INT32;

/77

/// 2-byte unsigned value.

/77

typedef unsigned short UINT16;

//7/

/// 2-byte Character. Unless otherwise specified all strings are
/// stored in the UTF-16 encoding format as defined by Unicode
/// 2.1 and ISO/IEC 10646 standards.

/77

typedef unsigned short CHAR16;

//7/

/// 2-byte signed value.

//7/

typedef short INT16;

//7/

/// Logical Boolean. 1-byte value containing O for FALSE or a 1
/// for TRUE. Other values are undefined.
//7/

typedef unsigned char BOOLEAN;

//7/

/// 1l-byte unsigned value.

/77

typedef unsigned char UINTS;

//7/

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
39

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

intel)

/// 1l-byte Character

///

typedef char CHARS;

///

/// 1l-byte signed value

///

typedef char INT8;

typedef void VOID;

typedef UINT64 EFI_PHYSICAL_ADDRESS;

typedef struct {
UINT32 Datal;
UINT16 Data2;
UINT16 Data3;
UINT8 Data4[8];
} EFI_GUID;

#define CONST const
#define STATIC static

#define TRUE ((BOOLEAN)(1==1))
#define FALSE ((BOOLEAN)(0==1))

static inline void DebugDeadlLoop(void) {
for (53);

#define FSPAPI __ attribute__ ((cdecl))
#define EFIAPI __ attribute__ ((cdecl))

Other Host Boot Loader Concerns

#define _ASSERT(Expression) DebugbDeadlLoop()

#define ASSERT(Expression)
do {
it (1(Expression)) {
_ASSERT (Expression);

s s 77

}
} while (FALSE)

typedef UINT32 FSP_STATUS;
typedef UINT32 EFI_STATUS;

7/

// HobType of EFI_HOB_GENERIC_HEADER.

7/

#define EF1_HOB_TYPE_MEMORY_ ALLOCATION
#define EF1_HOB_TYPE_RESOURCE_DESCRIPTOR
#define EF1_HOB_TYPE_GUID_EXTENSION
#define EFI_HOB_TYPE_UNUSED

#define EF1_HOB_TYPE_END OF HOB_LIST

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
40

0x0002
0x0003
0x0004
OXFFFE
OXFFFF

September 2015

- ®
Other Host Boot Loader Concerns (l n t e l >

September 2015

/77

/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.

/77

typedef struct {

}

//7/

/// ldentifies the HOB data structure type.
//7/

UINT16 HobType;

//7/

/// The length in bytes of the HOB.

/77

UINT16 HobLength;

//7/

/// This fTield must always be set to zero.
/77

UINT32 Reserved;
EFI_HOB_GENERIC_HEADER;

///

/// Enumeration of memory types introduced in UEFI.
///

typedef enum {

///

/// Not used.

///

EfiReservedMemoryType,

///

/// The code portions of a loaded application.

/// (Note that UEFI OS loaders are UEFI applications.)

///

EfiLoaderCode,

///

/// The data portions of a loaded application and the default
/// data allocation type used by an application to allocate
/// pool memory.

///

EfiLoaderData,

/7//

/// The code portions of a loaded Boot Services Driver.

///

EfiBootServicesCode,

///

/// The data portions of a loaded Boot Serves Driver, and the
/// default data allocation type used by a Boot Services Driver
/// to allocate pool memory.

///

EfiBootServicesData,

///

/// The code portions of a loaded Runtime Services Driver.
///

EfiRuntimeServicesCode,

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
41

Other Host Boot Loader Concerns

//7/

/// The data portions of a loaded Runtime Services Driver and
/// the default data allocation type used by a Runtime Services
/// Driver to allocate pool memory.

//7/

EfiRuntimeServicesData,

//7/

/// Free (unallocated) memory.

//7/

EfiConventionalMemory,

//7/

/// Memory in which errors have been detected.

/77

EfiUnusableMemory,

//7/

/// Memory that holds the ACPI tables.

/77

EFiACPIReclaimMemory,

/77

/// Address space reserved for use by the firmware.

//7/

EFiACPIMemoryNVsS,

/77

/// Used by system firmware to request that a memory-mapped 10
/// region be mapped by the 0S to a virtual address so it can
/// be accessed by EFI runtime services.

/77

EfiMemoryMappedlO,

//7/

/// System memory-mapped 10 region that is used to translate
/// memory cycles to 10 cycles by the processor.

/77

EfiMemoryMappedlOPortSpace,

//7/

/// Address space reserved by the firmware for code that is
/// part of the processor.

/77

EfiPalCode,

EfiMaxMemoryType

} EFI_MEMORY_TYPE;

/77

/// EFI1_HOB_MEMORY_ALLOCATION_HEADER describes the

/// various attributes of the logical memory allocation. The type
/// fTield will be used for subsequent inclusion in the UEFI

/// memory map.

/77

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
42

September 2015

- ®
Other Host Boot Loader Concerns (l n t e l >

September 2015

typedef struct {
///
/// A GUID that defines the memory allocation region"s type and
/// purpose, as well as other fields within the memory
/// allocation HOB. This GUID is used to define the additional
/// data within the HOB that may be present for the memory
/// allocation HOB. Type EFI_GUID is defined in
/// InstallProtocollInterface() in the UEFI 2.0 specification.
///
EFI_GUID Name;

///

/// The base address of memory allocated by this HOB. Type
/// EF1_PHYSICAL_ADDRESS is defined in AllocatePages() in the
/// UEFI 2.0 specification.

///

EFI_PHYSICAL_ADDRESS MemoryBaseAddress;

/77

/// The length in bytes of memory allocated by this HOB.
//7/

UINT64 MemoryLength;

//7/

/// Defines the type of memory allocated by this HOB. The
/// memory type definition follows the EFI_MEMORY_TYPE
/// definition. Type EFI_MEMORY_TYPE is defined

/// in AllocatePages() in the UEFI 2.0 specification.

//7/

EFI_MEMORY_TYPE MemoryType;

///

/// Padding for Itanium processor family
///

UINT8 Reserved[4];

} EFI_HOB_MEMORY_ALLOCATION_HEADER;

///
/// Describes all memory ranges used during the HOB producer
/// phase that exist outside the HOB list. This HOB type
/// describes how memory is used, not the physical attributes of
/// memory.
///
typedef struct {
///
/// The HOB generic header. Header_HobType =
/// EF1_HOB_TYPE_MEMORY_ALLOCATION.
///
EFI_HOB_GENERIC_HEADER Header;
///
/// An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that
/// describes the various attributes of the logical memory
/// allocation.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
43

l n te l : > Other Host Boot Loader Concerns

///
EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
//
// Additional data pertaining to the "Name' Guid memory
// may go here.
//
} EFI_HOB_MEMORY_ALLOCATION;

///

/// The resource type.

///

typedef UINT32 EFI_RESOURCE_TYPE;

//
// Value of ResourceType in EFl1_HOB_RESOURCE_DESCRIPTOR.
//

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED 10 0x00000001
#define EFI1_RESOURCE_I0 0x00000002
#define EF1_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EF1_RESOURCE_MEMORY_MAPPED_ I0_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI1_RESOURCE_I10_RESERVED 0x00000006
#define EFI1_RESOURCE_MAX_MEMORY_TYPE 0x00000007
///

/// A type of recount attribute type.

///

typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

//

// These types can be ORed together as needed.

//

// The first three enumerations describe settings

//

#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EF1_RESOURCE_ATTRIBUTE_TESTED 0x00000004
//

// The rest of the settings describe capabilities

//

#define EF1_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC
0x00000008

#define EF1_RESOURCE_ATTRIBUTE_MULTIPLE _BIT_ECC
0x00000010

#define EF1_RESOURCE_ATTRIBUTE_ECC RESERVED 1
0x00000020

#define EF1_RESOURCE_ATTRIBUTE_ECC_RESERVED 2
0x00000040

#define EF1_RESOURCE_ATTRIBUTE_READ PROTECTED
0x00000080

#define EF1_RESOURCE_ATTRIBUTE_WRITE_PROTECTED
0x00000100

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
44

September 2015

®
Other Host Boot Loader Concerns l n te l

September 2015

#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
0x00000200

#define EFI_RESOURCE ATTRIBUTE_UNCACHEABLE
0x00000400

#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE
0x00000800

#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH CACHEABLE
0x00001000

#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
0x00002000

#define EFI_RESOURCE_ATTRIBUTE_16 BIT_I0

0x00004000

#define EFI_RESOURCE ATTRIBUTE 32 BIT_10

0x00008000

#define EFI_RESOURCE_ATTRIBUTE_64 BIT_10

0x00010000

#define EFI_RESOURCE_ATTRIBUTE_UNCACHED EXPORTED
0x00020000

///
/// Describes the resource properties of all fixed,
/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.
///
typedef struct {
///
/// The HOB generic header. Header_HobType =
/// EF1_HOB_TYPE_RESOURCE_DESCRIPTOR.
///
EFI_HOB_GENERIC_HEADER Header;
///
/// A GUID representing the owner of the resource. This GUID is
/// used by HOB consumer phase components to correlate device
/// ownership of a resource.
///
EFI_GUID Owner;
///
/// The resource type enumeration as defined by
/// EF1_RESOURCE_TYPE.
/7//
EF1_RESOURCE_TYPE ResourceType;
///
/// Resource attributes as defined by
/// EF1_RESOURCE_ATTRIBUTE_TYPE.
///
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
///
/// The physical start address of the resource region.
///

EF1_PHYSICAL_ADDRESS PhysicalStart;

///

/// The number of bytes of the resource region.
///

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
45

- ®
l n te l > Other Host Boot Loader Concerns

UINT64 ResourcelLength;
} EFI1_HOB_RESOURCE_DESCRIPTOR;

///
///7 Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
///
typedef struct {

///

/// The HOB generic header. Header.HobType =

/// EF1_HOB_TYPE_GUID_EXTENSION.

///

EF1_HOB_GENERIC_HEADER Header;

///

/// A GUID that defines the contents of this HOB.

///

EF1_GUID Name;

//

// Guid specific data goes here

//
} EFI_HOB _GUID_TYPE;

///

/// Union of all the possible HOB Types.

///

typedef union {
EF1_HOB_GENERIC_HEADER *Header;
EF1_HOB_MEMORY_ALLOCATION *MemoryAllocation;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceDescriptor;
EF1_HOB_GUID_TYPE *Guid;
UINTS8 *Raw;

} EF1_PEI_HOB POINTERS;

/**
Returns the type of a HOB.

This macro returns the HobType field from the HOB header for
the HOB specified by HobStart.

@param HobStart A pointer to a HOB.
@return HobType.

**/

#define GET_HOB_TYPE(HobStart) \
((*(EFI1_HOB_GENERIC_HEADER **)&(HobStart))->HobType)

/**
Returns the length, in bytes, of a HOB.

This macro returns the HobLength field from the HOB header for
the HOB specified by HobStart.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
46

®
Other Host Boot Loader Concerns l n t e l

September 2015

@param HobStart A pointer to a HOB.
@return HobLength.

**/

#define GET_HOB_LENGTH(HobStart) \
((*(EF1_HOB_GENERIC_HEADER **)&(HobStart))->HobLength)

/**
Returns a pointer to the next HOB in the HOB list.

This macro returns a pointer to HOB that follows the
HOB specified by HobStart in the HOB List.

@param HobStart A pointer to a HOB.
@return A pointer to the next HOB in the HOB list.
**/
#define GET_NEXT_HOB(HobStart) \
(VOID *)(*(UINT8 **)&(HobStart) + GET_HOB_LENGTH (HobStart))

/**
Determines 1f a HOB is the last HOB in the HOB list.

This macro determine if the HOB specified by HobStart is the
last HOB in the HOB list. |If HobStart is last HOB in the HOB
list, then TRUE is returned. Otherwise, FALSE is returned.

@param HobStart A pointer to a HOB.

@retval TRUE The HOB specified by HobStart is the last
HOB in the HOB list.
@retval FALSE The HOB specified by HobStart is not the

last HOB in the HOB list.

*x

/

#define END_OF HOB_LIST(HobStart) (GET_HOB_TYPE (HobStart) ==
(UINT16)EFI_HOB_TYPE_END_OF HOB_LIST)

/**
Returns a pointer to data buffer from a HOB of type
EFI_HOB_TYPE_GUID_EXTENSION.

This macro returns a pointer to the data buffer in a HOB
specified by HobStart.

HobStart is assumed to be a HOB of type
EFI_HOB_TYPE_GUID_EXTENSION.

@param GuidHob A pointer to a HOB.

@return A pointer to the data buffer in a HOB.

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
47

intel)

**/
#define GET_GUID_HOB_DATA(HobStart) \

Other Host Boot Loader Concerns

(VOID *)(*(UINT8 **)&(HobStart) + sizeof (EFI_HOB GUID_TYPE))

/**

Returns the size of the data buffer from a HOB of type

EF1_HOB_TYPE_GUID_EXTENSION.

This macro returns the size, in bytes, of the data buffer in a

HOB specified by HobStart.
HobStart is assumed to be a HOB of type
EFI_HOB_TYPE_GUID_EXTENSION.

@param GuidHob A pointer to a HOB.

@return The size of the data buffer.
**/
#define GET_GUID_HOB_DATA_SIZE(HobStart) \
(UINT16) (GET_HOB_LENGTH (HobStart) - sizeof
(EFI1_HOB_GUID_TYPE))

/**
Returns the pointer to the HOB list.

This function returns the pointer to first HOB iIn the
IT the pointer to the HOB list is NULL, then ASSERT(Q)
@return The pointer to the HOB list.

**/

VOID *

EFI1API

GetHobList (
VOID

)
/**

list.

Returns the next instance of a HOB type from the starting HOB.

This function searches the first instance of a HOB type from

the starting HOB pointer.

IT there does not exist such HOB type from the starting HOB

pointer, it will return NULL.

In contrast with macro GET_NEXT_HOB(), this function does not
skip the starting HOB pointer unconditionally: it returns
HobStart back If HobStart itself meets the requirement;

caller is required to use GET_NEXT_HOB() if it wishes
current HobStart.

If HobStart is NULL, then ASSERT().

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
48

to skip

September 2015

- ®
Other Host Boot Loader Concerns (l n t e l >

September 2015

@param Type The HOB type to return.
@param HobStart The starting HOB pointer to search from.

@return The next instance of a HOB type from the starting HOB.

**/

VOID *

EFIAPI

GetNextHob (
UINT16 Type,
CONST VOID *HobStart

);

/**
Returns the first instance of a HOB type among the whole HO
list.

This function searches the first instance of a HOB type among
the whole HOB list.

IT there does not exist such HOB type in the HOB list, it wil
return NULL.

IT the pointer to the HOB list is NULL, then ASSERT().
@param Type The HOB type to return.

@return The next instance of a HOB type from the starting HOB.

**/
VOID *
EFIAPI
GetFirstHob (
UINT16 Type

);

/**
Returns the next instance of the matched GUID HOB from the
starting HOB.

This function searches the first instance of a HOB from the
starting HOB pointer.

Such HOB should satisfy two conditions:

its HOB type is EFI_HOB_TYPE_GUID_EXTENSION and its GUID Nam
equals to the input Guid.

IT there does not exist such HOB from the starting HOB pointer,
it will return NULL.

Caller is required to apply GET _GUID HOB_DATA () and
GET_GUID_HOB_DATA SIZE O

to extract the data section and its size info respectively.
In contrast with macro GET_NEXT_HOB(), this function does not
skip the starting HOB pointer unconditionally: it returns
HobStart back if HobStart itself meets the requirement;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
49

®
n te l > Other Host Boot Loader Concerns

caller is required to use GET_NEXT HOB() if it wishes to skip
current HobStart.

IT Guid is NULL, then ASSERT().
I HobStart is NULL, then ASSERT(Q).

@param Guid The GUID to match with in the HOB list.
@param HobStart A pointer to a Guid.

@return The next instance of the matched GUID HOB from the
starting HOB.

**/

VOID *

EFI1API

GetNextGuidHob (
CONST EFI_GUID *Guid,
CONST VOID *HobStart

);

/**
Returns the first instance of the matched GUID HOB among the
whole HOB list.

This function searches the first instance of a HOB among the
whole HOB list.

Such HOB should satisfy two conditions:

its HOB type is EFI_HOB TYPE GUID_EXTENSION and its GUID Name
equals to the input Guid.

IT there does not exist such HOB from the starting HOB pointer,
it will return NULL.

Caller is required to apply GET _GUID HOB DATA () and
GET_GUID_HOB_DATA _SIZE O

to extract the data section and its size info respectively.

IT the pointer to the HOB list is NULL, then ASSERT().
IT Guid is NULL, then ASSERT(Q).-

@param Guid The GUID to match with in the HOB list.

@return The first instance of the matched GUID HOB among the
whole HOB list.

**/

VOID *

EFIAPI

GetFirstGuidHob (
CONST EFI_GUID *Guid
)

//

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
50

September 2015

Other Host Boot Loader Concerns

September 2015

// Pointer to the HOB should be initialized with the output of

// FSP INIT PARAMS
//

extern volatile void *FspHobListPtr;

/**

Reads a 64-bit value from memory that may be unaligned.

This function returns the 64-bit value pointed to by Buffer.
The function guarantees that the read operation does not
produce an alignment fault.

IT the Buffer is NULL, then ASSERT().-

@param Buffer Pointer to a 64-bit value that may be

unaligned.

@return The 64-bit value read from Buffer.

**/

UINT64

EFIAPI

ReadUnaligned64 (
CONST UINT64

)
ASSERT (Buffer != NULL);

return *Buffer;

}

/**
Compares two GUIDs.

*Buffer

This function compares Guidl to Guid2. |If the GUIDs are
identical then TRUE is returned.
IT there are any bit differences in the two GUIDs, then FALSE

is returned.

IT Guidl is NULL, then ASSERT(Q).
IT Guid2 is NULL, then ASSERT(Q).

@param Guidl A pointer to a 128 bit GUID.
@param Guid2 A pointer to a 128 bit GUID.
@retval TRUE Guidl and Guid2 are identical.
@retval FALSE Guidl and Guid2 are not identical.

**/

BOOLEAN

EFIAPI

CompareGuid (
CONST EFI_GUID *Guidl,

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
51

l n te l : > Other Host Boot Loader Concerns

CONST EFI_GUID *Guid2
)

UINT64 LowPartOfGuidl;
UINT64 LowPartOfGuid2;
UINT64 HighPartOfGuidl;
UINT64 HighPartOfGuid2;

LowPartOfGuidl = ReadUnaligned64 ((CONST UINT64*) Guidl);
LowPartOfGuid2 = ReadUnaligned64 ((CONST UINT64*) Guid2);
HighPartOfGuidl = ReadUnaligned64 ((CONST UINT64*) Guidl + 1);
HighPartOfGuid2 = ReadUnaligned64 ((CONST UINT64*) Guid2 + 1);

return (BOOLEAN) (LowPartOfGuidl == LowPartOfGuid2 &&
HighPartOfGuidl == HighPartOfGuid2);

}

/**
Returns the pointer to the HOB list.
**/
VOID *
EFIAPI
GetHobList (
VOID

)

ASSERT (FspHobListPtr '= NULL);
return ((VOID *)FspHobListPtr);

}

/**
Returns the next instance of a HOB type from the starting HOB.
**/

VOID *

EFIAPI

GetNextHob (
UINT16 Type,
CONST VOID *HobStart
)

{

EF1_PEI_HOB_POINTERS Hob;
ASSERT (HobStart 1= NULL);

Hob.Raw = (UINT8 *) HobStart;
//
// Parse the HOB list until end of list or matching type is
// found.
//
while (YEND_OF HOB_LIST (Hob)) {

if (Hob.Header->HobType == Type) {

return Hob.Raw;
}

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
52

September 2015

®
Other Host Boot Loader Concerns l n te l

Hob_.Raw = GET_NEXT_HOB (Hob);

3
return NULL;

}
/**
Returns the first instance of a HOB type among the whole HOB
list.
**/
VOID *
EFIAPI
GetFirstHob (
UINT16 Type
)
VOID *HobList;
HobList = GetHobList ();
return GetNextHob (Type, HobList);
}
/**
Returns the next instance of the matched GUID HOB from the
starting HOB.
**/
VOID *
EFIAPI
GetNextGuidHob (
CONST EFI_GUID *Guid,
CONST VOID *HobStart
)
{

EF1_PEI_HOB_POINTERS GuidHob;

GuidHob.Raw = (UINT8 *) HobStart;
while ((GuidHob.Raw = GetNextHob (EFI_HOB_TYPE GUID_EXTENSION,
GuidHob.Raw)) = NULL) {
if (CompareGuid (Guid, &GuidHob.Guid->Name)) {
break;

}
GuidHob.Raw = GET_NEXT_HOB (GuidHob);

return GuidHob.Raw;

}

/**
Returns the first instance of the matched GUID HOB among the
whole HOB list.

**/

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
53

l n te l : > Other Host Boot Loader Concerns

VOID *

EFIAPI

GetFirstGuidHob (
CONST EFI_GUID *Guid
)

{
VOID *HobList;

HobList = GetHobList ();
return GetNextGuidHob (Guid, HobList);

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide September 2015
54

®
Other Host Boot Loader Concerns l n te l

Appendix B Sample Code to Find FSP

Header

September 2015

The sample code provided below parses the FSP binary and finds the address of the
FSP Header within it.

As the FV parsing has to be done before stack is available, a mix of assembly language
code and C code is used. The C code is used to parse the data structures and find the
FSP INFO Header. However, since the compiler will add prolog or epilog code to the C
function, inline assembly is used to bypass those portions of the C code.

The sample code provided here uses header files derived from the EDK2 source
available for download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

#include "PiFirmwareVolume.h"
#include "PiFirmwareFile.h"

void __attribute__ ((optimize(''00'))) Find_fsp_header
{

volatile register UINT8 *ptr asm (“eax');

#ifdef _ PRE_RAM__
_asm__ _ volatile__ (
"_global find_fsp_entry\n\t"
"find_fsp_entry:\n\t"
):
#endif

//

// Start at the FSP / FV Header base
//

ptr = (UINT8 *)CONFIG_FSP_BIN_BASE;

//
// Validate FV signature _FVH
//
it (((EF1_FIRMWARE_VOLUME_HEADER *)ptr)-> Signature !=
EFI_FVH_SIGNATURE) {
ptr = 0;
goto NotFound;
}

//
// Add the Ext Header size to the Ext Header base to go to the
// end of FV header

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide
55

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

l n te l : Other Host Boot Loader Concerns

//
ptr += ((EFI_FIRMWARE_VOLUME_HEADER *)ptr)->ExtHeaderOffset;
ptr += ((EFI_FIRMWARE_VOLUME_EXT HEADER *)ptr)->ExtHeaderSize;

//
// Align the end of FV header address to 8 bytes
//
ptr = (UINT8 *)(((UINT32)ptr + 7) & OXFFFFFFF8);

//
// Now ptr is pointing to thr FFS Header. Verify if the GUID
// matches the FSP_INFO_HEADER GUID
//
if (guidcompare(((EFI_GUID) (((EFI_FFS _FILE HEADER *)ptr)-
>Name)), ((EF1_GUID) gFsplInfoHeaderGuid))) {
ptr = O;
goto NotFound;
}

//
// Add the FFS Header size to the base to find the Raw section
// Header
//
ptr += sizeof(EFI_FFS _FILE HEADER);
it (((EF1_RAW_SECTION *)ptr)->Type = EFI_SECTION_RAW) {
ptr = O;
goto NotFound;
}

//

// Add the Raw Header size to the base to find the FSP INFO
// Header

//

ptr += sizeof(EFI_RAW_SECTION);

NotFound:
asm__ _ volatile__ ('ret"™);

}

Now, call this function using a temporary ROM stack containing the return address and
bypass the prolog or epilog code of the C function like below.

lea findFspHeaderStack, %esp
Jmp find_fsp_entry

findFspHeaderStack:
.align 4
.long findFspHeaderDone

findFspHeaderDone:

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
56

- ®
Other Host Boot Loader Concerns (l n te l >

A pictorial representation of the data structures that we parse in the above code is

given below.
Intel® FSP Binary
Firmware Volume
Header
T _Fi;r;u;a;e_ugﬂj;,; —? Firmware File RAW
Extended Header Header zﬂﬂéﬂn
I 8 Byte Alignment PRSP S
&
. i Firmware File RAW Data
HlEEE Section has the
(Type RAW) FSPINFO
Header
) A \
&

FV
Firmware File system

Mare Firmware Files

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
57

Other Host Boot Loader Concerns

Appendix C Memory Down Configuration

For memory down configurations, ensure that the MemoryDown PCD is enabled via the

BCT tool.

Then the following input structure should be filled in for each memory down DIMM
prior to calling the Fsplnit API.

typedef struct {

UINT8
UINT8
UINT8

UINT8
UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

DRAMDeviceType;
ModuleType;

SDRAMDensityAndBanks;

SDRAMAddressing;
VDD;

ModuleOrganization;

ModuleMemoryBusWidth;

TimebaseDividend;

TimebaseDivisor;

SDRAMMinimumCycleTime;

CASLatenciesLSB;

CASLatenciesMSB;

MinimumCASLatencyTime;

MinimumWriteRecoveryTime;

MinimumRASToCASDelayTime;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
58

//
//

//
//

//
//
//

//
//
/7/

//
//
/7/

//
//
//

//
//

//
/7/
//

//
//
//

A WN

o 01

10

11

12

14

15

16

17

18

DRAM Device Type
Module Type
SDRAM Density
and Banks

SDRAM Addressing
Module Nominal
Voltage

Module
Organization
Module Memory
Bus Width

Medium Timebase
(MTB) Dividend
Medium Timebase
(MTB) Divisor
SDRAM Minimum
Cycle Time
(tCKmin)

CAS Latencies
Supported, Least
Significant Byte
CAS Latencies
Supported, Most
Significant Byte
Minimum CAS
Latency Time
(tAAmin)

Minimum Write
Recovery Time
(tWRmin)

Minimum RAS# to
CAS# Delay Time
(tRCDmin)

September 2015

Other Host Boot Loader Concerns

UINT8

UINTS8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

UINT8

September 2015

MinimumRowToRowDelayTime;

MinimumRowPrechargeDelayTime;

UpperNibblesFortRASANdtRC;

tRASMIN;

tRCmin;

tRFCminLeastSignificantByte;

tRFCminMostSignificantByte;

tWTRmin;

tRTPmin;

UpperNibbleFortFAW;

tFAWMInN;

SdramThermalRefreshOption;
ModuleThermalSensor;

SDRAMDeviceType;

//
//
//
//
//
//
//
/7/
//
//
//
/7/
//
//
//
//
/7/
//
//
//
//
/7/
//
//
//
//
//
//
//
//
/7/
//
//
//
/7/
/7/
//
//
//
//
//
//
//
//
//
/7/

//

19

20

21

22

23

24

25

26

27

28

29

31

32

Minimum Row
Active to Row
Active Delay
Time (tRRDmin)
Minimum Row
Precharge Delay
Time (tRPmin)
Upper Nibbles
for tRAS and tRC
Minimum Active
to Precharge
Delay Time
(tRASmin), Least
Significant Byte
Minimum Active
to Active/
Refresh Delay
Time (tRCmin),
Least
Significant Byte
Minimum Refresh
Recovery Delay
Time (tRFCmin),
Least
Significant Byte
Minimum Refresh
Recovery Delay
Time (tRFCmin),
Most Significant
Byte

Minimum Internal
Write to Read
Command Delay
Time (EWTRmin)
Minimum Internal
Read to
Precharge
Command Delay
Time (tRTPmin)
Upper Nibble for
tFAW

Minimum Four
Activate Window
Delay Time
(tFAWmin)

SdramThermalRefreshOption

// ModuleThermalSensor
// 33 SDRAM Device

//

Type

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
59

l n te l : > Other Host Boot Loader Concerns

UINT8 tCKminFine; // 34 Fine Offset for
// SDRAM Minimum
// Cycle Time
// (tCKmin)
UINT8 tAAminFine; // 35 Fine Offset for
// Minimum CAS
// Latency Time
// (tAAmin)
UINT8 MACCount; // 41 Maximum Activate
// Count
UINT8 ReferenceRawCardUsed; // 62 Reference Raw Card
// Used
UINT8 AddressMappingEdgeConnector; // 63 Address Mapping
// from Edge
// Connector to DRAM
UINT8 ModuleManufacturerldCodelLsb; // 117 Module
// Manufacturer 1D
// Code, Least
// Significant Byte
UINT8 ModuleManufacturerldCodeMsb; // 118 Module
// Manufacturer 1D
// Code, Most
// Significant Byte
UINT8 ModuleManufacturinglLocation; // 119 Module
// Manufacturing
// Location
UINT8 ModuleManufacturingDateYear; // 120 Module
// Manufacturing
// Date Year
UINT8 ModuleManufacturingDateWWw; // 121 Module
// Manufacturing
// Date creation
// work week
UINT8 ModulleSerialNumberA; // 122 Module Serial
// Number A
UINT8 ModuleSerialNumberB; // 123 Module Serial
// Number B
UINT8 ModuleSerialNumberC; // 124 Module Serial
// Number C
UINT8 ModuleSerialNumberD; // 125 Module Serial
// Number D
UINT8 DramManufacturerldLsb; // 148 DRAM
// Manufacturer 1D
// Code, LSB
UINT8 DramManufacturerldMsb; // 149 DRAM
// Manufacturer 1D
// Code, MSB

} MEM_DOWN_DIMM_SPD_DATA;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
60

- ®
Other Host Boot Loader Concerns (l n te l >

typedef struct {
UINT32 MemoryDownDimmPopulation; // O - Empty, 1 — DIMM
// populated
MEM_DOWN_DIMM_SPD_DATA MemoryDownDimmSpdData;
} MEM_DOWN_DIMM_CONFIG;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
61

Other Host Boot Loader Concerns

Appendix D Sample Code to Find FSP
UPD DATA REGION

The sample code below will locate the UPD_DATA_REGION in the FSP binary and copy
the default data to a structure.

void early_init (FSP_INFO_HEADER *fsp_info)

{

FSP_FSP_INIT FsplnitApi;
FSP_INIT_PARAMS FsplnitParams;
FSP_INIT_RT_BUFFER FspRtBuffer;
VPD_DATA_REGION *FspVpdRgn;

UPD_DATA_REGION FspUpdRgn;

memset((void*)&FspRtBuffer, 0, sizeof(FSP_INIT_RT_BUFFER));
FspRtBuffer.Common.StackTop = (uint32_t *) ROMSTAGE_STACK;
FspRtBuffer.Common.UpdDataRgnPtr = (UPD_DATA_REGION

*)&FspUpdRgn;

/* Get VPD region start */

FspVpdRgn = (VPD_DATA REGION *)(fsp_info->ImageBase + fsp_info-

>CfgRegionOffset);

/* Verifify the VPD data region is valid */
ASSERT ((FspVpdRgn->PcdImageRevision == VPD_IMAGE_REV) &&
(FspVpdRgn->PcdVpdRegionSign == VPD_IMAGE_ID));

/* Copy default data from Flash */
memcpy ((void*)&FspUpdRgn, (void *)(fsp_info->ImageBase +
FspVpdRgn->PcdUpdRegionOffset),

sizeof(UPD_DATA_REGION));

/* Verififty the UPD data region is valid */
ASSERT(FspUpdRgn.PcdRegionTerminator == O0x55AA);

/* Override any UPD setting if required */

//

// Uncomment the line below to disable LAN device
//

//FspUpdRgn.PcdEnableLan = 0;

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
62

September 2015

®
Other Host Boot Loader Concerns l n te l

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
September 2015 Integration Guide
63

Other Host Boot Loader Concerns

intel.

Appendix E Port80 POST Codes

This appendix lists the port80 post codes that may be output during calls to FSP APIs.

E.1 TempRamlinit
Post Code Description
0x03 Microcode Loaded
0x04 Basic Init Complete
E.2 Fsplnit
Post Code Description
0x12 Enable Clock Gating
0x13 Clear Self Refresh
Ox14 Oem Track Init Complete
0x42 Program DDR Timing and Control Registers
Ox44 Program Burst Length Mode Registers
0x45 Enable DDR Low Voltage
0x50 Handle DDRIO Phy Initialization
0xAO0 MMRC SFR Vol Sel
OxA1 MMRC PLL Init
OxA2 MMRC DDR Static Init 2
OxA5 MMRC DDR Static Init Perf
OxA6 MMRC DDR Static Pwr Clk Gating
OxA7 MMRC DLL Init
OxA8 MMRC Comp Init 1
OxAA MMRC Comp Init 2

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family
Integration Guide September 2015
64

Other Host Boot Loader Concerns

Post Code Description
OxAE MMRC HMC Init
OxAF MMRC Wr Pointer Init
0xBO MMRC |0 BUF ACT Init
0xB1 MMRC Pre Jedec Init
0xB2 MMRC DDR3 Reset
0x51 Program DDRIO CKE for each rank
0x61 Program Timing and Control registers for Memory Controller. DRP,
DMAP...etc
0x62 Program Memory Mapping Registers
0x71 Perform D-unit Wake
0x81 Set Configuration for Pre-Jedec Init
0x82 Program the Jedec init for a row of memory
0x83 Program misc registers to be set after Mem Init
0x90 Program the PMI to be released by Bunit
0x91 Disable Pmi
0x92 Disable B-unit Cache
0x92 Set DDR Initialization Complete
0xBO Handle Rank Overrides... Rank to rank switching enabled
0xB1 Enable Diffamp And Odt Overrides
0xB2 Early Set Write Vref... Vref Set: 0x40
0xB3 Program the PMI to be released by Bunit
0xB4 Enable Pmi
0xB5 Handle Memory Training
0xBO Receive Enable.
0xDO Rank To Rank Sequence
0xB2 Early Mpr Read.
OxB3 Fine Write Leveling
OxB4 Coarse Write Leveling

September 2015

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
65

Other Host Boot Loader Concerns

Post Code

Description

0xB6

Read Vref

0xB7

Read Training

0xB9

Write Vref. Max Vref Center.

OxBA

Set Common Vref

0xBB

Write Training

0xBC

Command Clock Training

0xBD

Command Clock Restore

OxBE

Performance Setting

OxBF

Phy View Table

0xCO

Rank Margin Tool

0xC1

Rank To Rank Pointer Offset

0xB6

Vref Override

OxBE

Enable B-unit Cache

0xCO

Reconfigure DRP

0xD1

Program DDR Timing control registers

OxE1

Configure Scrambler

OxE2

Set Periodic Resistive Compensation

OxE3

Set DDR Initialization Complete

OxE4

PerformWake

OxE5

Change Refresh Period

OxE6

Program the PMI to be released by Bunit

OxE8

Enable Pmi

OxE7

Modify ECC Bytelane

OxE9

HandlePostTraining

OxEA

PrintDunitTable

OxEB

Print MRS Table

OxEC

Pass Gate Config

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
66

September 2015

Other Host Boot Loader Concerns

Post Code Description
OxED Pass Gate Test
OxFO MemoryTest Setup
OxF1 Memory Testing
OxF2 Scrub Memory
OxF3 Program PMI to be owned by Bunit
OxF4 Set Init Done
OxF5 Clear DDR3 Reset
OxF6 Program Bunit Performance Settings
OxF7 Disable HPET

September 2015

Intel” FSP for the Intel” Atom™ Processor C2000 Product Family

Integration Guide
67

	1 Introduction
	1.1 Purpose
	1.2 Intelligent Systems and Embedded Ecosystem Overview
	1.3 Intended Audience
	1.4 Related Documents
	1.5 Conventions
	1.6 Acronyms and Terminology

	2 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview

	3 FSP Integration
	3.1 Assumptions Used in this Document

	4 Boot Flow
	5 FSP Binary Format
	5.1 FSP Header
	5.1.1 Finding the FSP Header
	5.1.2 FSP Header Offset

	6 FSP Interface (FSP API)
	6.1 Entry-Point Calling Assumptions
	6.2 Data Structure Convention
	6.3 Entry-Point Calling Convention
	6.4 Exit Convention
	6.5 TempRamInitEntry
	6.5.1 Prototype
	6.5.2 Parameters
	6.5.3 Related Definitions
	6.5.3.1 Return Values
	6.5.3.2 Sample Code

	6.5.4 Description

	6.6 FspInitEntry
	6.6.1 Prototype
	6.6.2 Parameters
	6.6.3 Related Definitions
	6.6.4 Return Values
	6.6.5 Sample Code
	6.6.6 Description

	6.7 NotifyPhaseEntry
	6.7.1 Prototype
	6.7.2 Parameters
	6.7.2.1 Related Definitions

	6.7.3 Return Values
	6.7.4 Sample Code

	7 FSP Output
	7.1 Boot Loader Temporary Memory Data HOB
	7.2 FSP Reserved Memory Resource Descriptor HOB
	7.3 Non-Volatile Storage HOB
	7.4 HOB Sample Code
	7.4.1 Hob Infrastructure Sample Code
	7.4.2 Hob Parsing Sample Code
	7.4.3 GUID HOB Sample Code

	8 FSP Configuration Firmware File
	8.1 VPD/UPD Data Structure
	8.1.1 VPD Data Region
	8.1.2 UPD Data Region

	9 Tools
	10 Other Host Boot Loader Concerns
	10.1 Power Management
	10.2 Bus Enumeration
	10.3 Security
	10.4 64-bit Long Mode
	10.5 Pre-OS Graphics

	Appendix A HOB Parsing Sample Code
	Appendix B Sample Code to Find FSP Header
	Appendix C Memory Down Configuration
	Appendix D Sample Code to Find FSP UPD_DATA_REGION
	Appendix E Port80 POST Codes
	E.1 TempRamInit
	E.2 FspInit

